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UniChest: Conquer-and-Divide Pre-Training for
Multi-Source Chest X-Ray Classification

Tianjie Dai , Ruipeng Zhang , Feng Hong , Jiangchao Yao , Member, IEEE,
Ya Zhang , and Yanfeng Wang

Abstract— Vision-Language Pre-training (VLP) that uti-
lizes the multi-modal information to promote the training
efficiency and effectiveness, has achieved great success in
vision recognition of natural domains and shown promise
in medical imaging diagnosis for the Chest X-Rays (CXRs).
However, current works mainly pay attention to the explo-
ration on single dataset of CXRs, which locks the potential
of this powerful paradigm on larger hybrid of multi-source
CXRs datasets. We identify that although blending sam-
ples from the diverse sources offers the advantages to
improve the model generalization, it is still challenging to
maintain the consistent superiority for the task of each
source due to the existing heterogeneity among sources.
To handle this dilemma, we design a Conquer-and-Divide
pre-training framework, termed as UniChest, aiming to make
full use of the collaboration benefit of multiple sources
of CXRs while reducing the negative influence of the
source heterogeneity. Specially, the “Conquer” stage in
UniChest encourages the model to sufficiently capture
multi-source common patterns, and the “Divide” stage
helps squeeze personalized patterns into different small
experts (query networks). We conduct thorough experi-
ments on many benchmarks, e.g., ChestX-ray14, CheXpert,
Vindr-CXR, Shenzhen, Open-I and SIIM-ACR Pneumothorax,
verifying the effectiveness of UniChest over a range of
baselines, and release our codes and pre-training models
at https://github.com/Elfenreigen/UniChest.

Index Terms— Chest x-rays, medical imaging diagnosis,
conquer and divide, vision-language pre-training.

I. INTRODUCTION

CHEST X-Ray (CXR) in screening chest diseases is essen-
tial to detect and control their fatal infectious impact

on human lives in broad countries [1]. To reduce the labor
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costs, deep learning techniques have become prevalent for
machine-assisted CXR diagnosis, driving medical imaging
recognition into the new era [2]. Specially, with the rapid
development of pre-training models, extensive studies have
been conducted and shown promise in a wide range of tasks
and domains [3], drawing increasing attention in medical
community.

Recently, Vision-Language Pre-training techniques has sig-
nificantly improved the performance of machine-aided CXR
disease diagnosis [4], [5], [6], [7]. Some studies even have
shown the potential of surpassing the experienced radiologists
in diagnosing some chest diseases [7]. Besides, in combination
with medical domain-specific knowledge, these pretrained
models exhibit more reasonable explanations in the lesion
grounding [6], [7]. Nevertheless, it is worth noting that these
works for CXR VLP only consider pre-training on a single-
source dataset e.g., MIMIC-CXR of about 300K samples [8].
Recalling the practice of GPT [9] or CLIP [10] that utilizes
billions of multi-source samples, single-source VLP inherently
induces drawbacks in the disease coverage and representative-
ness [8], especially under real-world medical applications.

Motivated by the above limitation, we explore build-
ing a more powerful pre-training framework by leveraging
multi-source CXR data. Generally, the label space union
of multiple sources can help expand the coverage of the
disease categories, particularly for rare diseases. Besides, sam-
ples from different sources with diverse radiation equipment,
collection standards and population distributions, may comple-
ment each other [11], which helps enhance the generalization
ability of pretrained models. Unfortunately, we argue that
it is still very challenging to effectively utilize multi-source
CXRs, as the source heterogeneity (shown in Fig. 1) also
exacerbates the complexity of the CXR disease data, which
could impair the holistic improvement for all source tasks
during pre-training.

To address this dilemma, we propose a Conquer-and-
Divide pre-training framework, termed as UniChest, which
maintains the merits of multi-source data collaboration and
simultaneously weakens the negative effect of the source
heterogeneity by a proper training isolation. Specifically, at the
“Conquer” stage of UniChest, we promote the capture of
multi-source common patterns at first in parts of the model,
which focuses on enhancing the feature extraction abilities.
Then, at the “Divide” stage of UniChest, we introduce a
mixture of experts warmed up from previous stage, together
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Fig. 1. Left: The class distribution of the multi-source dataset composed of MIMIC-CXR, ChestX-ray14, CheXpert and VinDr-CXR training sets. The
initial five characters of each label serve as the abbreviated x-axis annotation. Right: T-SNE visualization w.r.t. the visual representations of medical
images randomly selected from MIMIC-CXR, ChestX-ray14, CheXpert and VinDr-CXR, which characterizes the source heterogeneity.

with the guidance of source contrastive learning, to squeeze the
source-specific patterns into different experts, which reduces
the interference among sources during pre-training. With this
framework, we can achieve better efficiency and effectiveness
for pre-training on the large-scale multi-source CXR data. In a
nutshell, the contribution of this work can be summarized as
follows:

• We explore pre-training on large-scale multi-source CXR
data and propose a Conquer-and-Divide pre-training
framework to overcome the dilemma induced by the
source heterogeneity in scaling up the data.

• We design a mixture of deep query networks together
with a source contrastive learning loss to squeeze
source-specific patterns into separate components, pro-
moting a harmonious multi-source collaboration for
pre-training.

• We conduct thorough experiments to show the promise
of UniChest on multiple datasets, i.e., ChestX-ray14 [12],
CheXpert [13], Vindr-CXR [14], Shenzhen [15], Open-
I [16] and SIIM-ACR Pneumothorax [17], achieving new
state-of-the-art performance for diverse CXR diagnosis.

II. RELATED WORK

A. Deep Learning for Chest X-Ray Disease Diagnosis

Considering the labor and repeatability of human experts
in CXR diagnosis, it is possible to find the computer-aided
solutions powered by deep learning [18], [19], [20], [21].
Thereby, extensive CNN-based methods for CXRs have been
explored in recent years [22]. For instance, Khoiriyah [23]
built a network comprising of three convolutional layers and
three connected layers, showing remarkable performance in
automatic pneumonia detection. The enhancement by transfer
learning further reduced the training cost and improved the
generalization performance [24], [25]. Specifically, several
studies utilized models pre-trained on the natural domain
e.g., ImageNet [26] as initialization and finetuned the last
layer [27]. In addition, post-hoc techniques can be also very
beneficial to enhance the stability and accuracy of the CXR
diagnosis. For example, some explorations [28], [29] focus on
the model ensemble, i.e., directly summarizing the multiple
outputs of a series of models as the final prediction, achieving
the remarkable performance.

B. Vision-Language Pre-Training in Medical Domain
Recently, Vision-Language Pre-training (VLP) models have

achieved impressive success in natural domain [30], [31], [32],
which then drives many extensions in the medical area and
improves the ability of machine-aided medical applications.
ConVIRT [33] made the first attempt to integrate VLP into
medical models, which follows the two-stream paradigm with
the bidirectional contrastive learning. GLoRIA [34] explored
the fine-grained information contained in the image and report,
proposing a framework for learning both global and regional
representations of two modalities. MedCLIP [35] proposed one
decoupled multimodal contrastive learning framework based
on CLIP to scale the usable training data from two distinct
sources. BioVIL [4] focused on the representation of radio-
logical reports and proposed a radiology-specific text encoder
along with the classical VLP paradigm. CheXzero [5] retrained
a pre-trained CLIP model [10] on the CXR data and showed
considerable improvement. MedKLIP [6] extracted entities
from reports and converted them to the medical-specific
knowledge descriptions, which enhanced the model reasoning
ability. KAD [7] built up a medical knowledge graph to
fine-tune text encoder and performed the image-text con-
trastive learning with paired chest X-ray pairs, showing
state-of-the-art capability on common benchmarks. However,
all these works mentioned above are either pre-trained on a
single dataset from the identical source or on dual sources
like MedCLIP [35], which overlook the non-negligible het-
erogeneity problem in their corresponding application on the
multi-source CXR data.

III. METHODOLOGY

In this section, we first present the problem formulation and
the motivation of our study. Then, we will introduce the basic
model design that consists of modality-specific backbones and
the MoE-QN module. Finally, we provide detailed descriptions
and analysis of the Conquer-and-Divide pre-training stages.

A. Problem Formulation
Assuming that we have a training set of N samples collected

from the multiple sources, D = {(xi , Yi , li , ti )}N
i=1, where xi

denotes the CXR image, Yi is the label set indicating what
diseases are found for xi , li means the source identity, and ti
denotes the report of xi . Note that, for those samples that
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Fig. 2. Inconsistent improvement is achieved when comparing KAD and
KAD-Multi in terms of the AUC metric, when scaling up the training data
by multiple sources and evaluating on the VinDr-CXR test set.

have no reports, we convert Yi to ti correspondingly. Our
goal is to train a vision-language pre-training model on the
given multi-source data D, which can accurately diagnose
the chest diseases. Specifically, in the inference phase, the
model can estimate the diseases in the given set for any
CXR image. Here, we would like to clarify that our method
adheres to the vision-language pre-training paradigm instead
of transition supervised learning paradigm, since it inherently
extracts representation vectors from images and text data for
contrastive pre-training and can perform to open-set and zero-
shot evaluations. Conventional supervised learning actually
cannot perform such evaluations due to the rigid dimen-
sion issue about the prediction as well as the generalization
dilemma towards the semantics of new classes.

B. Motivation

Generally, scaling up CXR samples for pre-training should
be useful to improve generalization as discussed in the previ-
ous sections. However, we should point out that the resulting
multi-source samples, on one hand, enjoy the better diversity
w.r.t. training samples and label space, yet on the other hand,
suffer from the non-negligible source heterogeneity issue as
shown in Fig. 1. Physically, the locales and time frames of
source samples can be quite diverse, as ChestX-ray14 [12]
contains the samples captured from 1992 to 2015 in the
U.S. while VinDr-CXR [14] consists of CXRs in Vietnam
from 2018 to 2020. Even though CXRs might appear indistin-
guishable to the human eye, the diagnostic models can actually
respond very differently in the face of some imperceptive
factors like the dosage of X-ray used and the quality of the
imaging instrument [36]. From the t-SNE visualization in
Fig. 1, we can find that the distributions of various sources
exhibit the distinct disparities. To further under the influence
of the source heterogeneity, we implement the straightforward
pre-training on the hybrid multi-source data and compare its
performance with the pre-training on single source. Specifi-
cally, we adopt the current state-of-the-art (SOTA) KAD [7]
to conduct the pre-retraining on MIMIC-CXR dataset, and
compare with the pre-training on the multiple sources (termed
as KAD-multi). As shown in Fig. 2, KAD-multi does not
achieve the consistent improvement, and on some certain
diseases, KAD-multi even significantly lags behind the vanilla
KAD.

With this observation, we re-think the early VLP paradigm
that is naively applied in scaling up CXR data and over-
looks the source heterogeneity issue. To handle this dilemma,
we actually should allow the pre-training to capture the
multi-source common patterns and simultaneously can main-
tain the source-specific patterns, which motivates us to
incorporate the philosophy of “Conquer” and “Divide” design
for pre-training.

C. Conquer-and-Divide Pre-Training
In this part, we describe the proposed Conquer-and-Divide

pre-training framework, which includes the model architecture,
the loss design and the training schedules, detailed as follows.

1) The Model Architecture: We follow the prevalent vision-
language pre-training paradigm with the proper tailored
design to train a diagnosis model, which consists of two
modality-specific encoders and one modality-interaction mod-
ule. Note that, this is different from the classical supervised
framework that directly maps the input image space to the
label space. The merits are tri-fold: First, we can inject more
knowledge into the label space via the textual encoder, which
is richer in semantics than the naive one/multi-hot label vector.
The second is that we can incorporate the prior knowledge
to promote the learning efficiency of vision encoder, when
the textual description for medical images is available, e.g.,
the report information of samples from MIMIC. Finally,
VLP allows us to achieve better generalization for open-set
categories by means of the powered textual encoder. In the
following, we concretely describe the architecture design of
each component in our UniChest.

Given a sample (xi , Yi , li , ti ), we take the ResNet-50 as
the visual backbone to encode xi and adopt the output of the
4-th residual block as the image representation [6], denoting as
8image(·). For the report information ti , RadGraph [37] is used
to extract key entities and filter the irrelevant words. When
reports containing more than one sentence, we extract entities
sentence by sentence, and use [SEP] token as the separation
between different entities.1 After the entity extraction, we use
PubMedBERT [38] pre-trained on Unified Medical Language
System (UMLS) data [39] as textual encoder backbone 8text
for generating text representation [7]. For clarity, we summa-
rize the modality-specific encoding process as below,

I i = 8image(xi ) ∈ Rh×w×d , T i = 8text(ti ) ∈ Rd . (1)

For the disease prediction, we introduce a MoE-QN
Module, namely, mixture of query networks, where each
query network consists of a few transformer decoder layers
(4-layers in default). The MoE-QN module plays the role
of overcoming the source heterogeneity issues by squeezing
the source-specific patterns into different query networks, but
its training should carefully follow our Conquer-and-Divide
schedules, which will be discussed in the subsequent sections.
For each query network, we take the fine-grained visual
representation I i as Key and Value, and utilize the textual
representation of the disease set Yi = {Yi1, . . . , Yic} (encoded

1For CXR samples without reports, we use their corresponding labels as
the input entity and also take [SEP] token to separate the multiple labels.
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Fig. 3. The framework of UniChest, which consists of two training stages. During the “Conquer” stage, two modality encoders first project visual
and textual representations into the common space with alignment, then feed them into the first transformer query networks for prediction. The
multi-source common patterns are learnt as much as possible at this stage. During the “Divide” stage, we freeze the modality encoders and squeeze
the source-specific patterns via the MoE-QN module with the guidance of the enhanced supervised loss and the source contrastive learning.

by 8text(·) similarly as in Eq. (1)) as Query. The output from
the sequential transformer decoder will be fed to one MLP
layer to obtain the prediction of each Query Network,

sk
i = 8k

QN(I i , 8text(Yi )) ∈ Rc, k = 1, . . . , K , (2)

where c is the total class number of all sources and K is the
number of query networks. Then, we transform {sk

i }
K
k=1 of all

query networks to the total prediction by an automatic linear
combination, which will be described at the “Divide” stage.

2) The Training at the “Conquer” Stage: As discussed in the
earlier sections, the source heterogeneity issue can be the core
bottleneck to deteriorate the performance of pre-training for
the consistent improvement for each source task. Therefore,
at this “Conquer” stage, we first encourage the model to
capture multi-source common patterns as many as possible fol-
lowing the prevalent vision-language pre-training framework
like KAD [7]. The training loss of this stage involves two
parts, the image-text bidirectional contrastive loss LBCL and
the specially enhanced multi-label cross-entropy loss LBCE
(see Section IV-B for its implementation detail) w.r.t. the first
query network prediction. Taking a batch of M samples as an
example, LBCL emphasizes the alignment between the global
visual representation and the textual representation, which
could be formulated as follows,

LBCL = − log
e Ī⊤

i T i /τ∑M
m=1 e Ī⊤

i T m/τ
− log

eT⊤
i Ī i /τ∑M

m=1 eT⊤
i Īm/τ

(3)

where Ī i is the average pooling of I i along the first two dimen-
sions so that we reduce it to the same dimension of T i , and
τ is temperature with the default setting 1.0 following [40].
Regarding LBCE, we only enforce the supervision on the first

query network and compute the enhanced multi-label cross-
entropy loss at this stage. Note that, samples in some domains
may have smaller label space than the union label space of
all sources. In this case, we neglect the computation between
prediction and missing classes of these samples, even if it may
belong to them (but are unobserved). Finally, we sum up LBCL
and LBCE (only involves the first query network) as the overall
loss for each mini-batch at the “Conquer” stage as follows

LConquer(s1) = LBCL + LBCE(p, Y )

∣∣∣∣
p=s1

. (4)

3) The Training at the “Divide” Stage: Previous stage follows
the classical pre-training spirit, where we treat multiple sources
equally, and expect that the model can sufficiently learn
the multi-source common patterns. At the “Divide” phase,
we mainly explore to mediate the negative impact induced
by the source heterogeneity. Concretely, on the basis of the
warming-up during the “Conquer” stage, we train all the query
networks (MoE-QN Module) with freezing all the other parts
of the model. In the MoE-QN Module, the new query networks
introduced at the this stage are initialized from randomness.
Here, the multi-label cross-entropy loss will be implemented
on the ensemble prediction sAll from {sk

}
K
k=1, unlike using

s1 in Eq. (4). The final prediction is characterized by the
following equation

sAll
i = λs1

i + (1 − λ)

K∑
k=2

sk
i ωk

i , (5)

where λ is the hyperparameter to balance the training of the
first query network and the remaining query networks, and
ωk

i is the learnable weight to summarize the contribution of
the source-specific modules for the diagnosis prediction. Note
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TABLE I
COMPARISON BETWEEN UNICHEST AND SINGLE-SOURCE PRE-TRAINING WITH FINE-TUNING BASELINES ON CHESTX-RAY14.

AUC SCORES OF 14 CLASSES AND THE AAUC SCORE ARE LISTED. EACH LABEL IS ABBREVIATED, WHICH

IS ALIGNED WITH LABELS IN THE LEFT PANEL OF FIG. 4

TABLE II
COMPARISON WITH OTHER STATE-OF-THE-ART METHODS ON FINE-TUNING CLASSIFICATION TASK WITH DIFFERENT TRAINING DATA PORTIONS

ON SIIM-ACR PNEUMOTHORAX. FT DENOTES FINE-TUNING PRE-TRAINED MODEL, ZS DENOTES ZERO-SHOT CLASSIFICATION

that, the intuition behind Eq. (5) is to inherit the training gains
at the “Conquer” stage by λ, and simultaneously squeeze the
source-specific patterns to the other query networks by ωk

i .
Source Contrastive Learning. In Eq. (5), we introduce the
learnable weights to incorporate the source-specific patterns
into the newly introduced query networks during the “Divide”
Stage. However, without any guidance, it is challenging to
achieve this goal by optimization. Here, we introduce a
source contrastive learning to promote the desire. Specifically,
we transform the global visual representation Ī i into a K − 1
simplex via one-layer MLP 81(·) and Softmax layer as the
weight vector, namely, ωi = 81( Ī i ) ∈ RK−1. Then, ωi is
projected into a higher dimension space by another one-layer
MLP 82(·), denoted as ω̄i = 82(ωi ), which is the high-dim
vector to perform a source contrastive learning with the
guidance of source id l in the following

LSCL = − log

∑ j ̸=i
l j =li eω̄⊤

i ω̄ j /τ∑M
m ̸=i eω̄⊤

i ω̄m/τ
. (6)

In Eq. (6), the numerator
∑ j ̸=i

l j =li eω̄⊤
i ω̄ j /τ computes the sum

of exponential similarities of the high-dim weight vectors ω̄

between sample i and all other samples j from the same
source l, encouraging to pull the samples with the same source
identify closer together. The denominator

∑M
m ̸=i eω̄⊤

i ω̄m/τ cal-
culates the sum of exponential similarities of the high-dim
weight vectors between sample i and all other samples in the
batch, providing a normalization factor to ensure stability of
the loss. Generally, above contrastive learning helps us to learn
the similar weight vector for the samples from the same source,
which makes the source-specific patterns learned by the similar
query networks. Under this mechanism, we naturally learn
an automatic optimal assignment for the remaining query
networks to overcome the source heterogeneity issue. Then,
with Eq. (5) and Eq. (6), the overall loss at the “Divide” stage

can be formulated as

LDivide = LSCL + LConquer(sAll) (7)

4) Difference From the Pre-Training With Fine-Tuning: The
proposed Conquer-and-Divide pre-training is intrinsically dif-
ferent from the ordinary fine-tuning after pre-training, although
both of them are a two-stage process. First, the two-stage
training of UniChest is towards all multi-source data, while
the fine-tuning after pre-training is narrowed down to a
single-source scenario. When the target dataset’s correspond-
ing training set is seen during multi-source pre-training, this
leads to the distinction in the generalization ability of two
frameworks, where UniChest is significantly stronger than
pre-training with fine-tuning as supported by Table I. Second,
the “Divide” stage is to properly mediate the heterogeneity
patterns in a broad sense, which does not mean multi-source
pre-training contradicts with the conventional pre-training and
fine-tuning diagram. Conversely, the downstream task can still
apply the ordinary fine-tuning ways to achieve fast adaptation
for unseen sources. For instance, we fine-tune the pre-trained
UniChest on SIIM-ACR Pneumothorax [17] with different
training data ratios following MedKLIP [6]. Overall, UniCh-
est’s zero-shot capability is already comparable to the 100%
fine-tuned performance of other models and the diagnostic
performance is further enhanced after further fine-tuning as
shown in Table II. Finally, when it comes to the subsequent
experimental comparison, we mainly focus on the zero-shot
performance of pre-training, instead of the performance by
the fine-tuning, which follows the prevalent pre-training spirit
that tries to avoid the expensive tuning cost for downstream
tasks as much as possible.

IV. EXPERIMENTS

In this section, we will introduce the datasets for
pre-training and downstream tasks, evaluation metrics and
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TABLE III
STATISTICS OF DATASETS FOR PRE-TRAINING AND DOWNSTREAM

implementation details will also be detailedly described.
At last, we will present the experimental results of our
proposed method compared with other baselines.

A. Datasets
We combine some common CXR datasets containing

MIMIC-CXR [8], ChestX-ray14 [12], CheXpert [13] and
VinDr-CXR [14] for pre-training, namely Multi-CXR, which
yields a grand total of 685,951 Chest X-Ray images.

For evaluating the generalization performance of the pre-
trained model, we adopt Shenzhen [15], Open-I [16],
SIIM-ACR Pneumothorax [17] and PadChest [16] for
zero-shot classification and ChestX-Det10 [42] which is the
subset of ChestX-ray14 for intuitive lesion grounding. More
detailed statistics of pre-training and downstream datasets
can be found in Table III. We can observe that significant
diversity exists in the collection time, population distribution,
disease category coverage and sample scales among different
datasets.

B. Implementation Details
The pre-training process of UniChest is conducted on a sin-

gle NVIDIA A100 GPU for 30 epochs in the first “Conquer”
stage and 20 epochs in the second “Divide” stage. The starting
checkpoint for the second stage is the one that performed
the best on the ChestX-ray14 validation set. The number of
transformer decoder layers of each query network in MoE-QN
Module is set to 4. The hyperparameter λ which weights the
first query network during the “Divide” stage is set to be
0.5 and the total number of query network K is 4 in default.
The dimension of ω̄ which is the projection of the MLP layer
82(·) is set to be 32 during source contrastive learning. The
temperature parameter τ in Eq. (6) is set to 1.0. We set the
training batch size as 32 and resize input images as 512 ×

512. We adopt the AdamW optimizer in conjunction with the
cosine annealing scheduler for managing the learning rate,
where the initial learning rate is 1 × 10−5. To perform data
augmentation, we additionally utilize the Fourier amplitude
mixup method, which has been demonstrated to be effective
for medical imaging data [43], [44]. Besides, we utilize
the ASL loss [45] as LBCE to promote balanced training.
These techniques have demonstrated promising outcomes in
the analysis of CXR data. For MedKLIP-multi and KAD-
multi, we strictly follow the training hyper-parameters and

implementation details described in their original papers and
official codes. Their pre-training dataset is also Multi-CXR
that is identical to UniChest. In MedKLIP-multi, for
samples without location annotations (excluding MIMIC-
CXR), we mask the calculation of location contrastive loss
directly.

C. Evaluation Metrics

Some common metrics for multi-label classification are
adopted to evaluate the model performance, i.e., area under
curve (AUC), F1 score, accuracy (ACC) and average pre-
cision (AP) for each category and their average value,
namely, average AUC (aAUC), average F1 (aF1), average
accuracy (aACC) and mean average precision (mAP), for
comprehensive comparison. Following the strategy of Med-
KLIP [6], the final binary threshold of each category prediction
is the value when the maximum F1 score is achieved and ACC
metric also adopts this threshold.

D. Baselines

We consider a wide range of baselines for CXR pre-training,
including ConVIRT [33], GLoRIA [34], MedCLIP [35],
BioVIL [4], CheXzero [5], MedKLIP [6], and KAD [7].

ConVIRT trains two modality-specific encoders by bidirec-
tional contrastive loss to learn visual representations. GLoRIA
utilizes both global and fine-grained features for medical
VLP. MedCLIP [35] trains one CLIP-based framework on
two CXR datasets including MIMIC-CXR and CheXpert.
BioVIL proposes a radiology-specific text encoder for the
subsequent classical pipeline of VLP. CheXzero retrains one
CLIP model with a corpus of the medical domain. Med-
KLIP designs one novel entity extraction and transition
module to inject domain-specific knowledge into the process
of VLP. KAD incorporates a medical knowledge graph to
further improve the capability of current VLP models in
Chest X-Ray, showing SOTA performance on some common
public benchmarks.

E. Results

In this part, we provide the results of in-domain eval-
uation on pre-training datasets and zero-shot evaluation on
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TABLE IV
COMPARISON OF UNICHEST WITH BASELINES ON IN-DOMAIN CLASSIFICATION. FOUR METRICS INCLUDING AAUC, AF1, AACC AND MAP

SCORES ARE REPORTED. FOR ALL DATASETS, THE METRICS ALL REFER TO THE MACRO AVERAGE ON ALL DISEASES

Fig. 4. Per-category performance of different methods on ChestX-ray14 (left) and Open-I (right). AUC scores of each category are displayed. 1 and
0 are adopted as the maximum and minimal values for each category in the radar chart.

downstream datasets. Additionally, we showcase the lesion
grounding capability through intuitive examples.

1) In-Domain Evaluation on Pre-Training Datasets: We com-
pare UniChest with other baselines on the test set of
pre-training datasets in Table IV. UniChest demonstrates a
notable improvement in various evaluation metrics compared
to the best baseline models. Specifically, for ChestX-ray14,
UniChest shows a significant improvement of 6.51%, 9.30%,
3.60% and 10.51% respectively as to aAUC, aACC, aF1 and
mAP than the best baseline. In terms of fine-grained classi-
fication for each category, UniChest demonstrates persistent
gains as shown in Fig. 4 (left). For CheXpert, UniChest
outperforms 6.16%, 9.79%, 2.40% and 11.28%. In the case of
VinDr-CXR, UniChest surpasses the best baselines by 12.08%,
10.68%, 7.77% and 12.05%. By introducing multi-source CXR
datasets and the Conquer-and-Divide pre-training framework,
the diagnosis ability of VLP model has been significantly
enhanced.

To mitigate the impact of inconsistent training data,
we also conduct variants of the baselines that utilize the
same training data with UniChest. These variants include
models trained on single-source data (i.e., KAD-CXR14,
KAD-CXP, and KAD-VC in Table IV) as well as mod-
els trained on multi-source data (i.e., MedKLIP-multi and
KAD-multi). KAD-CXR14 outperforms KAD on ChestX-
ray14 with improvements of 4.47% in aAUC, 6.43% in
aACC, 2.74% in aF1, and 6.55% in mAP. However, it falls
short compared to UniChest, which achieves better results
by 2.04%, 2.87%, 0.86%, and 3.96% respectively. KAD-
CXP and KAD-VC also demonstrate similar performance.
Moreover, it is worth noting that while the single dataset-based
KAD models may perform reasonably well on their cor-
responding datasets, their generalization capability to other
datasets is limited. This is evident in the case of KAD-
VC’s performance on ChestX-ray14, where it may not
generalize effectively. For the baseline variants that utilize
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TABLE V
COMPARISON OF UNICHEST WITH BASELINES ON ZERO-SHOT CLASSIFICATION. FOUR METRICS INCLUDING AAUC, AF1, AACC, AND MAP

SCORES ARE REPORTED. FOR SINGLE-LABELED DATASET, WE REPORT AUC, F1, ACC, AND AP SCORES

Fig. 5. Per-category performance of 16 seen categories during pre-training in PadChest.

multi-source data, MedKLIP-multi and KAD-multi, their over-
all performance exceeds that of their vanilla methods and
achieves comparable or even better results than using only
the corresponding single-source data. However, these two
methods of direct data replenishment lag behind our proposed
UniChest with a substantial margin. Generally speaking, the
comparison with these variants validates the necessity and
importance of developing a multi-source CXR foundational
model and demonstrates the effectiveness of our framework
design.

2) Zero-Shot Classification Evaluation: We conduct the
zero-shot evaluation to assess the generalization ability of
CXR pre-training models. The results in Table V demonstrate
the superiority of UniChest across various datasets. In the case
of the Shenzhen dataset, UniChest surpasses the best baseline
KAD by 6.43%, 4.32%, 10.20% and 14.57% respectively as
to AUC, ACC, F1 and AP. For the SIIM-ACR Pneumoth-
orax dataset, UniChest outperforms 2.93%, 0.95%, 3.79%
and 0.60% respectively compared with the best baseline.
As to Open-I dataset, UniChest achieves significant improve-
ments by 4.84%, 2.72%, 0.56% and 2.74%. As indicated
by the per-category evaluation in Fig. 4 (right), UniChest
achieves performance improvements across the majority of the
categories. For instance, the classification ability is sharply

consolidated of No Finding, Pleural Other and Support
Devices with a margin of over 3%. For PadChest, UniChest
obtains an average AUC of 0.8403 for 16 seen categories
during pre-training, surpassing KAD by 1.51%. Specifically,
the diagnosis capability of 11 classes achieves SOTA as shown
in Fig. 5, among which the improvements of fracture, nodule
and pleural thickening are around or over 5%. For unseen
pathologies in Fig. 6, UniChest also showcases superior per-
formance in the given 16 diseases, demonstrating its value
in rare disease diagnosis. Besides, it is worth noting that the
multi-source data baseline variants (e.g., KAD-multi) exhibit
relatively modest and inconsistent improvements compared to
their vanilla methods and single-source data baseline variants
(e.g., KAD-CXR14), which emphasizes the necessity of our
method design in enhancing the model’s generalization ability.
In summary, the results in Table V validate the signifi-
cance of the Conquer-and-Divide pre-training framework for
multi-source CXR samples, which indicates its potential in
assisting clinical human diagnosis and highlights its unignor-
able value.

3) Qualitative Grounding Visualization: In Fig. 7, we present
several examples of lesion grounding on ChestX-Det10 by
UniChest. To provide an intuitive visualization, we generate
spectrum heatmaps on the original CXR images based on
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Fig. 6. Per-category performance of 16 randomly selected unseen categories with more than 50 positive samples in PadChest.

Fig. 7. Some visualization examples of lesion grounding performance of UniChest on ChestX-Det10. In the left CXR images, bounding boxes
are abnormal areas manually annotated by the consensus of some board-certified radiologists. In the right heatmaps generated by UniChest, the
color temperature in the heatmaps indicates the attention focus of the model, with higher temperatures indicating greater attention and suggesting
a higher likelihood of abnormality in the corresponding region.

TABLE VI
ABLATION STUDY ON DIFFERENT STAGES OF UNICHEST. FOUR METRICS INCLUDING AAUC, AF1, AACC AND MAP SCORES ARE REPORTED.

FOR SINGLE-LABELED DATASET, WE REPORT AUC, F1, ACC AND AP SCORES

the MoE-QN Module’s regional cross-attention maps in trans-
former decoder layers. By comparing the model-detected
lesions with the bounding boxes annotated by expert clinicians,
we observe a strong alignment between model findings and
the diagnoses made by experts, demonstrating the reasoning
ability and interpretability of UniChest.

V. ABLATION STUDY

A. The Effectiveness of Conquer-and-Divide Framework

1) On “Conquer” Stage: Data replenishment from multiple
sources is an intractable issue mentioned in Section III.
We compare the impact of incorporating multi-source training
data in the “Conquer” stage of our UniChest on the diagnostic
performance, as displayed in the second row of Table VI.
It turns out that simply augmenting the training data with
multiple sources does not consistently yield significant per-
formance gains compared to using a single source, as shown
in the first row of the table. According to Table VI, explicit

data replenishment improves the performance on ChestX-
ray14 by 6.08%, aligning with the training data distribution.
However, the performance of the zero-shot evaluation varies
between the two inference sets. For the Shenzhen dataset,
the influence of the “Conquer” stage has a significantly
positive effect, as all four metrics experience considerable
improvement. In the case of SIIM-ACR Pneumothorax, the
AUC and ACC values are comparable to previous state-of-
the-art approaches, but the other two metrics decrease by
approximately 3.26%.

2) On “Divide” Stage: A comparison of the second and
fourth rows of Table VI reveals that UniChest significantly
outperforms the “Conquer” stage in terms of zero-shot gen-
eralization by 4.86% (AUC), 3.48% (F1), 3.19% (ACC), and
2.85% (AP) for Shenzhen, and 2.41% (AUC), 4.78% (F1),
3.13% (ACC), and 3.28% (AP) for SIIM-ACR Pneumoth-
orax. To further present the effectiveness of the soft-gating
mechanism and LSCL in the MoE-QN structure during the
“Divide” stage, we present the results of removing the weight
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Fig. 8. Ablation study on different hyper-parameter combinations, where λ is the weight of the first query network during the “Divide” stage, and K
is the total number of query networks.

TABLE VII
ABLATION STUDY ON THE ROLE OF THE REPORT. REPORT IN THE

FIRST ROW MEANS ADOPTING REPORT ENTITIES AS THE INPUT OF

THE TEXT ENCODER IF THE SAMPLE IS WITH REPORT. “LABEL

CONCAT.” DENOTES WE CONCATENATE CORRESPONDING POSITIVE

LABELS AS THE INPUT. “PARTIAL” MEANS ADOPTING “LABEL CONCAT.”
ONLY FOR SAMPLES WITHOUT REPORTS WHILE “ALL” MEANS

ADOPTING “LABEL CONCAT.” REGARDLESS OF WHETHER

ACCOMPANIED BY REPORTS OR NOT

generation process and replacing it with equal weights in
the third row of Table VI. As shown on SIIM-ACR Pneu-
mothorax, our mechanism significantly enhances zero-shot
generalization. In addition to the performance improvement,
it’s also important to note that the introduction of the MoE-QN
structure at the “Divide” stage does not significantly increase
the computational cost compared to previous single-stage pre-
training frameworks. Concretely, the increase in computational
complexity is marginal, growing only from 44.3 GFLOPs in
KAD to 45.5 GFLOPs in UniChest, which constitutes an
increase of approximately 2.7%.

B. The Robustness Under Different Hyper-Parameters

The main hyper-parameters in our UniChest framework are
the weight λ of the first query network during the “Divide”
stage, and the total number of query networks K . In the
previous sections, we set the default values of λ as 0.5 and
K as 4. In Fig. 8, we present results for various combinations
of λ ∈ [0.3, 0.7] and K ∈ [3, 5], showcasing the average
numerical outcomes across six different datasets, including
ChestX-ray14, CheXpert, VinDr-CXR, Shenzhen, SIIM-ACR
Pneumothorax, and Open-I. For instance, the default setting
achieves best numerical results as to aAUC and aF1, while
the range of variation for the maximum and minimum values
of aAUC and aACC are below 1%, which validates the
robustness of our method under different hyper-parameter
combinations.

TABLE VIII
ABLATION STUDY ON DIFFERENT MODALITY ENCODERS

C. The Role of Report in Pre-Training

As stated in Section III, following the paradigm of vision-
language pre-training, we use entities extracted from the report
by NER tool as the input of the text encoder 8text if the
corresponding report is available, while we concatenate their
positive labels as input content for those without reports.
In our multi-source pre-training dataset Multi-CXR, there are
a total of 685,951 samples, of which 348,900 samples from
MIMIC-CXR have reports, meaning that half of the samples
come with reports while the rest samples have no correspond-
ing reports. It’s worth noting that numerous datasets, which
currently present only labels and images, such as CheXpert
and ChestX-ray14, were originally accompanied by reports.
The labels from these datasets were derived using NLP tools
akin to our entity extraction method. Nevertheless, due to
certain practical restrictions, including privacy concerns, these
reports are not publicly available. Consequently, opting for
label concatenation as a substitute is a reasonable manner.
To further study the role of the report, we consider three
different processing methods. First, we discard the text input
directly. Second, we utilize only reports and cancel the input
of positive labels for samples without reports. Third, we adopt
positive label concatenation as the input for the text encoder
for all samples whether they have a report or not. The overall
result shown in Table VII drops a little when we underutilize
the text input, emphasizing the importance of semantically
rich reports in the development of the CXR diagnosis
model.

D. Performance Under Different Backbones

We also explore the influence of modality backbones in
the whole architecture. Firstly, we substitute ResNet-50 with
DenseNet-121 [46] for the visual backbone and then replace
the default fine-tuned PubMedBERT with ClinicalBERT [47]
as textual encoder. As shown in Table VIII, we notice the
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average numerical outcomes across six different datasets of the
three settings are comparable, demonstrating the insensitivity
of backbone selection.

VI. DISCUSSION AND CONCLUSION

In this paper, we propose a novel Conquer-and-Divide pre-
training framework for multi-source Chest X-Rays, namely
UniChest, which is among the first attempts to fuse and
utilize CXR samples from various origins harmonically. Our
method effectively balances the benefits of multi-source data
while minimizing the negative impacts the inter-source het-
erogeneity brings. In the “Conquer” stage, UniChest enhances
feature extraction by sharing model components across dif-
ferent sources. In the “Divide” stage, it employs a mixture
of deep query modules and utilizes a novel source-contrastive
learning loss to isolate source-specific patterns, further reduc-
ing cross-source interference. Through extensive experiments
on a range of benchmark datasets, we show the robust-
ness and effectiveness of UniChest under diverse settings in
CXR diagnosis.

Despite its powerful performance, UniChest still has some
limitations in its design and application. Firstly, similar
to MedKLIP and KAD, UniChest is limited to generating
coarse-grained grounded heatmaps by utilizing cross-attention
maps, which falls short of meeting the requirements for
precise pixel-level segmentation. Therefore, the development
of a comprehensive universal CXR model that combines both
classification and fine-grained lesion grounding is a promising
avenue for benefiting the medical community, which would
not only offer efficiency but also ensure trustworthiness in
daily applications. Secondly, although the Conquer-and-Divide
framework is precise and meaningful and we have proposed
one implementation paradigm within this framework. There is
room for further exploration of other concrete frameworks that
align with this spirit. We hope that our UniChest will inspire
the exploration and utilization of multi-source CXRs.
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