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 A B S T R A C T

The CXR-LT series is a community-driven initiative designed to enhance lung disease classification using 
chest X-rays (CXR). It tackles challenges in open long-tailed lung disease classification and enhances the 
measurability of state-of-the-art techniques. The first event, CXR-LT 2023, aimed to achieve these goals by 
providing high-quality benchmark CXR data for model development and conducting comprehensive evaluations 
to identify ongoing issues impacting lung disease classification performance. Building on the success of CXR-LT 
2023, the CXR-LT 2024 expands the dataset to 377,110 chest X-rays (CXRs) and 45 disease labels, including 19 
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new rare disease findings. It also introduces a new focus on zero-shot learning to address limitations identified 
in the previous event. Specifically, CXR-LT 2024 features three tasks: (i) long-tailed classification on a large, 
noisy test set, (ii) long-tailed classification on a manually annotated ‘‘gold standard’’ subset, and (iii) zero-
shot generalization to five previously unseen disease findings. This paper provides an overview of CXR-LT 
2024, detailing the data curation process and consolidating state-of-the-art solutions, including the use of 
multimodal models for rare disease detection, advanced generative approaches to handle noisy labels, and 
zero-shot learning strategies for unseen diseases. Additionally, the expanded dataset enhances disease coverage 
to better represent real-world clinical settings, offering a valuable resource for future research. By synthesizing 
the insights and innovations of participating teams, we aim to advance the development of clinically realistic 
and generalizable diagnostic models for chest radiography.
1. Introduction

The CXR-LT series marks a community-driven initiative to improve 
lung disease classification using chest X-rays (CXR) that addresses 
challenges in open long-tailed lung disease classification and advances 
the measurability of state-of-the-art techniques (Holste et al., 2022). 
These goals were pursued during the first event, CXR-LT 2023 (Holste 
et al., 2024), by offering high-quality benchmark CXR data for model 
development and conducting detailed evaluations to identify persistent 
issues affecting lung disease classification performance. CXR-LT 2023 
attracted significant attention, with 59 teams yielding over 500 unique 
submissions. Since then, the task setup and data have provided a 
foundation for numerous studies (Hong et al., 2024; Huijben et al., 
2024; Park and Ryu, 2024; Li et al., 2024a).

As the second event in the series, CXR-LT 2024 maintains the 
general design and goals of its predecessor while introducing a new 
emphasis on zero-shot learning. This addition addresses a limitation 
identified in CXR-LT 2023. The vast number of unique radiological 
findings, estimated to exceed 4500 (Budovec et al., 2014),1 suggests 
that the actual distribution of clinical findings on CXR is at least 
two orders of magnitude greater than what current benchmarks can 
offer. Therefore, effectively addressing the ‘‘long-tail’’ of radiological 
abnormal findings necessitates the development of a model that can 
generalize to new classes in a ‘‘zero-shot’’ manner.

This paper provides an overview of the CXR-LT 2024 challenge, 
including two long-tailed tasks that attracted extensive participation 
and one newly introduced zero-shot task. Task 1 and Task 2 focus 
on long-tailed classification, with Task 1 using a large, noisy test 
set and Task 2 using a small, manually annotated test set. Task 3 
concerns zero-shot generalization to previously unseen diseases. Each 
task adheres to the general framework established by CXR-LT 2023, 
providing participants with a large, automatically labeled training set 
consisting of over 250,000 CXR images with 40 binary disease labels. 
The final submissions from participants are evaluated against a separate 
held-out test set prepared in a similar manner.

In the following sections, we introduce each task setting and outline 
the evaluation criteria. Next, we detail the data curation process before 
presenting the results for each task. We then consolidate key insights 
from top-performing solutions and provide practical perspectives. Fi-
nally, we use our findings to suggest a path forward for few- and 
zero-shot disease classification, emphasizing the potential of leveraging 
multimodal foundation models.

2. Methods

2.1. Main tasks

The CXR-LT 2024 challenge includes three tasks: (1) long-tailed 
classification on a large, noisy test set, (2) long-tailed classification on 
a small, manually annotated test set, and (3) zero-shot generalization 

1 http://www.gamuts.net/about.php
2 
to previously unseen diseases. All can be formulated as multi-label 
classification problems.

Given the severe label imbalance in these tasks, the primary eval-
uation metric was mean average precision (mAP), specifically the 
‘‘macro-averaged’’ AP across classes. While the area under the re-
ceiver operating characteristic curve (AUROC) is often used for similar 
datasets (Wang et al., 2017; Seyyed-Kalantari et al., 2020), it can 
be heavily inflated in the presence of class imbalance (Fernández 
et al., 2018; Davis and Goadrich, 2006). In contrast, mAP is more 
suitable for long-tailed, multi-label settings as it measures the per-
formance across decision thresholds without degrading under-class 
imbalance (Rethmeier and Augenstein, 2022). For thoroughness, mean 
AUROC (mAUROC) and mean F1 score (mF1) – with a threshold of 0.5 
– were computed as auxiliary classification metrics. We also calculated 
the mean expected calibration error (ECE) (Naeini et al., 2015) to quan-
tify bias. To further enhance clinical interpretability, we also report 
per-class F1 scores, as well as macro- and micro-averaged F1 scores and 
false-negative rates for critical findings, in addition to the challenge’s 
primary evaluation metric. We believe these additions provide a more 
granular understanding of model performance in practical settings.

2.2. Dataset curation

Table  1 lists the characteristics of the datasets used in the three 
tasks. The same training dataset is utilized for all three tasks. Similarly, 
the same development dataset is shared across all three tasks, with Task 
3 focusing on five unseen classes. Task 1 and Task 3 share the same 
test set; however, Task 3 explicitly evaluates performance on the five 
unseen classes. Task 2 is a subset of Task 1, containing 26 manually 
annotated classes. Fig.  1 lists the 45 classes, with the five unseen classes 
being Bulla, Cardiomyopathy, Hilum, Osteopenia, and Scoliosis. The 
remaining 40 classes exclude these five unseen classes, while the 14 
classes are derived from the original MIMIC-CXR dataset and the 12 
additional classes introduced in CXR-LT 2023. Fig.  2 shows example 
chest X-rays from the challenge dataset, where each image contains 
multiple annotated abnormalities.

In this section, we detail the data curation process of two datasets: 
(i) the automatically labeled CXR-LT dataset used in Tasks 1 and 3, and 
(ii) a manually annotated ‘‘gold standard’’ test set used in Task 2.

2.2.1. CXR-LT dataset
The CXR-LT challenge dataset2 was developed by expanding the 

label set of the MIMIC-CXR dataset,3 (Johnson et al., 2019a) resulting in 
a more complex, long-tailed label distribution. This year, newly added 
clinical findings were selected from sources including the disease list of 
the PadChest dataset (Bustos et al., 2020) and the Fleischner glossary 
of thoracic imaging terms (Hansell et al., 2008). After ensuring that 
a sufficient number of occurrences were observed in the dataset for 
reliable evaluation, these 19 new disease findings are:

(1) Adenopathy, (2) Azygos Lobe, (3) Clavicle Fracture, (4) Fissure, 
(5) Hydropneumothorax, (6) Infarction, (7) Kyphosis, (8) Lobar Atelec-
tasis, (9) Pleural Other, (10) Pulmonary Embolism, (11) Pulmonary 

2 https://physionet.org/content/cxr-lt-iccv-workshop-cvamd
3 https://physionet.org/content/mimic-cxr/2.0.0/
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Table 1
 Characteristics of the datasets used in the three tasks.
 Dataset Task 1 Task 2 Task 3
 Samples Labels Samples Labels Samples Labels

 Train 258,871 40 258,871 40 258,871 40
 Development 39,293 40 39,293 40 39,293 5
 Test 78,946 40 406 26 78,946 5

Hypertension, (12) Rib Fracture, (13) Round Atelectasis, (14) Tuber-
culosis, (15) Bulla, (16) Cardiomyopathy, (17) Hilum, (18) Osteopenia, 
(19) Scoliosis.

The last five abnormal findings – Bulla, Cardiomyopathy, Hilum, 
Osteopenia, and Scoliosis – were not included in the challenge training 
set and were held out for zero-shot evaluation in Task 3.

In addition, we replaced the ‘‘No Finding’’ class with a more intu-
itive ‘‘Normal’’ class. ‘‘No Finding’’ indicated that none of the abnormal 
findings in the label set were present. For instance, with the original 14 
MIMIC-CXR classes, ‘‘No Finding’’ meant that none of these 14 findings 
were present; however, when expanding the label set to 26 classes, 
this ‘‘No Finding’’ label may, in fact, include one of the 12 added 
abnormalities. To avoid unclear interpretation of this label across tasks, 
we curated new labels for a simplified ‘‘Normal’’ class, signifying that 
no cardiopulmonary disease or abnormality was found in the report. 
Like in 2023, the radiology reports for each CXR study were parsed 
using RadText (Wang et al., 2022), a radiology text analysis tool, to 
extract the presence status of new diseases.

The final dataset included 377,110 CXR images, each labeled with 
one or more of the 45 diseases, following a long-tailed distribution (Fig. 
1). Like CXR-LT 2023, we opted to use image data from the MIMIC-
CXR-JPG dataset (Johnson et al., 2019b)4 to increase accessibility 
and reduce the burden of storing this dataset (∼600 GB vs. ∼4.7 TB 
using the raw DICOM data provided by MIMIC-CXR). The dataset was 
randomly partitioned into training (70%), development (10%), and 
test (20%) sets at the patient level; critically, this split was unique to 
CXR-LT 2024, meaning participants could not re-use models from the 
previous year’s challenge. Participants had access to all images, but 
were provided with labels only for the training set.

2.2.2. Gold standard test set
In our overview of CXR-LT 2023 (Holste et al., 2024), we used a 

manually annotated ‘‘gold standard’’ set derived from the challenge 
test set to evaluate the differences in manual vs. automated annotation 
as well as how top-performing solutions fared on this test set with 
reduced label noise. Specifically, six annotators reviewed 406 MIMIC-
CXR radiology reports for the presence or absence of 26 disease findings 
considered in CXR-LT 2023. For complete data curation details of 
this gold standard set, please see Holste et al. (2024). This dataset 
provides a high-quality benchmark for evaluating model performance 
on a smaller, manually vetted test set. This year, in CXR-LT 2024, we 
used this gold standard dataset as the test set in Task 2.

2.3. Schedule

Table  2 shows the task schedule. The challenge was conducted 
on the CodaLab platform5, with a separate CodaLab page for each 
of the three tasks (Pavao et al., 2023). Any registered CodaLab user 
could apply, but would only be accepted after submitting proof of the 
necessary PhysioNet credentials required to access MIMIC-CXR-JPG.

4 https://physionet.org/content/mimic-cxr-jpg/2.0.0/
5 https://codalab.lisn.upsaclay.fr/competitions/18601, https://codalab.

lisn.upsaclay.fr/competitions/18603, https://codalab.lisn.upsaclay.fr/
competitions/18604
3 
Table 2
Schedule of CXR-LT 2024.
 Event Date Teams

 Registration May 1, 2024 61
 Development phase May 1, 2024 29
   Training data
   Development data
   Leaderboard
 Test phase 17
   Test data Aug 26, 2024
   Submission Sept 6, 2024
 Workshop Oct 10, 2024 9

During the Development Phase (May 1, 2024 - August 26, 2024), 
registered participants downloaded the labeled training set and the 
unlabeled development set, from which they generated a comma-
separated values (CSV) file with predictions to upload. Submissions 
were evaluated on the held-out development set, and results were 
updated on a live, public leaderboard. During the Test Phase (August 
26, 2024 - September 6, 2024), test set images (without labels) were 
released. Participants were asked to submit CSV files with test set pre-
dictions for final evaluation and ranking in each task. The leaderboard 
was hidden in this phase, and each team’s best-scoring submission 
was retained. The final Test Phase leaderboard ranked participants 
primarily by mAP, then by mAUROC in the event of ties.

3. Results

3.1. Participation

The CXR-LT challenge received 96 team applications on CodaLab, 
of which 61 were approved after providing proof of credentialed access 
to MIMIC-CXR-JPG (Johnson et al., 2019b). During the Development 
Phase, 29 teams participated, submitting a total of 661, 349, and 364 
unique submissions to the public leaderboard for Tasks 1, 2, and 3, 
respectively. In the final Test Phase, a total of 17 teams participated. 
We selected the top 9 teams for the invitation to present at the CXR-LT 
2024 challenge event at MICCAI 20246 and for inclusion in this study. 
Since two teams excelled in both Tasks 1 and 2, this comprised the top 4 
solutions in Tasks 1 and 2 as well as the top 3 solutions for the zero-shot 
Task 3. Table  3 summarizes the top-performing groups participating in 
one or more of these tasks and system descriptions. Additional details, 
including all presentation slides, are available on GitHub,7 allowing 
readers to explore the specifics of all methods in greater depth.

3.2. System descriptions

Team A: zguo. This team proposed the ChexFusion+ model for CXR-
LT classification, participating in Task 1 and Task 2. Their approach 
leveraged ensembles of 12 multi-resolution ConvNeXt (Liu et al., 2022) 
models trained with synthetically generated long-tail data. Specifically, 
they used input prompts and random Gaussian noise to generate two 
images through a conditional denoising U-Net and a variational au-
toencoder decoder (VAE) decoder. The two generated images, together 
with the input prompts and the corresponding MIMIC-CXR image, 
were used as input for the ConvNeXt for training. To address the data 
imbalance problem in the tail cases, they used pre-trained large gener-
ative models to generate 100 new images per rare disease class. These 
synthetic images were generated using carefully constructed prompts 
that specified multiple co-occurring thoracic abnormalities, such as 
‘‘Round(ed) Atelectasis, Pneumothorax, Pleural Effusion, Lung Opacity, 
and Atelectasis’’, to reflect realistic radiographic comorbidities.

6 https://cxr-lt.github.io/CXR-LT-2024/
7 https://github.com/CXR-LT/CXR-LT-2024

https://physionet.org/content/mimic-cxr-jpg/2.0.0/
https://codalab.lisn.upsaclay.fr/competitions/18601
https://codalab.lisn.upsaclay.fr/competitions/18603
https://codalab.lisn.upsaclay.fr/competitions/18603
https://codalab.lisn.upsaclay.fr/competitions/18604
https://codalab.lisn.upsaclay.fr/competitions/18604
https://cxr-lt.github.io/CXR-LT-2024/
https://github.com/CXR-LT/CXR-LT-2024
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Fig. 1. Long-tailed distribution of the CXR-LT 2024 challenge dataset. The dataset was formed by extending the MIMIC-CXR benchmark to include 12 new clinical findings (red) 
by parsing radiology reports.
Fig. 2. Representative chest X-rays from the challenge dataset, each demonstrating multiple findings. (a) Includes the Hilum label (new in CXR-LT 2024); (b) shows Fracture 
(introduced in CXR-LT 2023); and (c) displays original MIMIC-CXR labels (Cardiomegaly, Edema, Lung Opacity).
Team B: tianjie_dai. This team leveraged a multimodal ensemble 
approach to address the imbalanced, multi-label classification chal-
lenge in the CXR-LT tasks. Specifically, they employed an ensemble 
of EfficientNetV2-Large (Tan and Le, 2021) and PubMedBERT (Gu 
et al., 2020) models, fine-tuned on a Unified Language Medical System 
(UMLS) knowledge graph (Dai et al., 2024), to integrate both image 
and text features. To address class imbalance, they used an asymmetric 
loss function (Kim, 2023), assigning higher weights to rare classes. 
4 
Test-time augmentation techniques were applied to improve model ro-
bustness and generalization, including resizing, cropping, and flipping. 
Additionally, they incorporated external datasets from multiple sources, 
such as ChestXRay-14 (Wang et al., 2017), CheXpert (Irvin et al., 2019), 
VinDr-CXR (Nguyen et al., 2022), and BRAX (Reis et al., 2022), to 
enhance representation learning of rare disease labels.
Team C: XYPB . This team addressed the CXR-LT challenge with a 
multimodal ensemble approach, leveraging multi-view and multi-scale 
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Table 3
Overview of top-performing CXR-LT 2024 challenge solutions. ENS - ensemble; LRW - loss reweighting; VL - vision-language.
 Team Institution Image 

Resolution
Backbone ENS LRW VL Pre-training  

 A Arizona State 
University

224, 384 ConvNeXt-S 
ConvNeXt-B 
ConvNeXt-T 
ConvNeXt V2-B

✓ ✓ ImageNet  

 B Shanghai Jiaotong 
University

512 EfficientNetV2-L ✓ ✓ ✓ ImageNet → NIH, CheXpert, 
VinDr-CXR, BRAX

 

 C Yale University 1024 ConvNeXt-S 
EfficientNetV2-S

✓ ✓ ✓ ImageNet → MIMIC-CXR  

 D Carnegie Mellon 
University

1024 ConvNeXt-S ✓ ✓ ImageNet → CheXpert, 
NIH, VinDr-CXR

 

 E Rensselaer 
Polytechnic Institute

336, 448, 
512

ViT-L ✓ MIMIC-CXR, CheXpert, 
PadChest, NIH, BRAX

 

 F The University of 
Tokyo

384, 512 ConvNeXt V2-S 
MaxViT-T

✓ ✓ ImageNet → NIH  

 G University of 
Pennsylvania

224 ViT-L ✓ ✓ ✓ ImageNet → MIMIC-CXR, 
CXR-Concepts, 
Chest ImaGenome, CXR-LT

 

 H Xiamen University 224 ResNet50 ✓ ✓ None  
 I Pontifical Catholic 

University of Chile
384, 416 DenseNet121 

SigLIP Base 
ConvNeXt-S 
Uniformer

✓ ✓ ✓ ImageNet → MIMIC-CXR, IU X-ray, 
Chest ImaGenome, CheXpert, 
CheXlocalize, VinDr-CXR

 

image alignment to enhance classification in the long-tailed, multi-
label setting. Their method builds on the CLEFT (Du et al., 2024a) 
and MaMA (Du et al., 2024b) frameworks, incorporating contrastive 
language-image pretraining (CLIP) with additional image-to-image and 
image-to-text contrastive learning across multi-view image pairs from 
chest X-ray studies. This approach allowed their model to capture in-
formation from varied perspectives, such as postero-anterior and lateral 
views. To tackle the multi-scale nature of medical imaging, they intro-
duced a Symmetric Local Cross-Attention (SLA) alignment module that 
models region-specific visual-text correlations through cross-attention, 
aligning local image patches with descriptive text segments. To coun-
teract class imbalance, they used a weighted asymmetric loss (Ridnik 
et al., 2021). For the image encoder, they utilized ConvNeXt-S (Liu 
et al., 2022) and EfficientNet V2-S (Tan and Le, 2021) backbones, 
pre-trained on ImageNet for classification and MIMIC-CXR using a 
CLIP-based approach, for Task 1 and Task 2, and use parameter efficient 
fine-tuned medical LLM, i.e., BioMedLM (Bolton et al., 2024), as their 
language encoder.
Team D: dongkyunk . This team implemented a two-stage frame-
work designed to effectively leverage the multiple views available 
for each patient. In the first stage, a single model was trained using 
the ML-Decoder (Ridnik et al., 2023) classification head alongside 
Noisy Student (Xie et al., 2020) self-training. In the second stage, 
a Transformer-based model called CheXFusion was introduced to ag-
gregate multi-view features (Kim, 2023). The feature aggregation in 
CheXFusion is analogous to encoding multiple sentences in natural lan-
guage processing, where each sentence represents a single chest X-ray 
image. Additionally, a weighted version of the asymmetric loss (Ridnik 
et al., 2021) was employed to address inter-class imbalance from the 
long-tailed distribution of diseases and intra-class imbalance due to the 
predominance of negative labels in multi-label classification.
Team E: yangz16 . This team tackled the CXR-LT challenge with 
a foundation model-based approach. Their methodology incorporated 
three key components: DINOv2 foundation models (Oquab et al., 2023) 
utilizing the ViT-Large network architecture (Neil and Dirk, 2020) as 
the backbone, the ML-Decoder (Neil and Dirk, 2020) classification 
head, and multi-view/multi-resolution ensembling. The DINOv2 mod-
els were pre-trained on over 710,000 chest X-rays from diverse datasets, 
including MIMIC-CXR (Johnson et al., 2019a), CheXpert (Irvin et al., 
5 
2019), PadChest (Bustos et al., 2020), NIH Chest X-ray14 (Wang et al., 
2017), and BRAX (Reis et al., 2022), using self-supervised learning that 
combined a self-distillation loss and masked image modeling to learn 
robust representations. The ML-Decoder mapped local features from 
the foundation model to disease-specific predictions for classification, 
employing attention mechanisms to achieve finer localization of disease 
findings.

Team F: yyama . This team utilized an ensemble of ConvNeXt V2 (Liu 
et al., 2022) and MaxViT (Tu et al., 2022) models with domain-
specific pretraining and view-based aggregation. The ConvNeXt V2 
models were pre-trained on ImageNet, while the MaxViT model was 
further pretrained on the NIH Chest X-ray dataset. To address class 
imbalance, they applied an asymmetric loss function (Ridnik et al., 
2021) combined with class weights, assigning higher importance to 
rare classes. Additionally, they implemented a view-based prediction 
aggregation method, combining predictions from frontal and lateral 
views, with a weighted average favoring the frontal view.
Team G: yyge. This team employed a dual-model strategy combining 
Vision-Language Models (VLM) and Multi-View Vision Models (MVM) 
for zero-shot and multi-label disease classification in chest X-rays. 
The VLM integrated DINOv2 (Oquab et al., 2023) as the image en-
coder and BERT (Boecking et al., 2022) for text encoding, utilizing 
fine-grained disease descriptions from ChatGPT (Achiam et al., 2023). 
The model was first pretrained on domain-specific datasets, and then 
was fine-tuned on the CXR-LT training set with the weighted binary 
cross-entropy loss for class imbalance. Meanwhile, the MVM converted 
zero-shot tasks into few-shot problems by mining disease-specific exam-
ples from radiology reports and aggregated multi-view features using 
DINOv2 and lightweight Transformers. Using a weighted asymmetric 
loss (Kim, 2023) and multi-view learning further addressed long-tail 
distributions. This combined framework effectively captured domain-
specific knowledge and balanced performance across seen and unseen 
diseases.

Team H: ZhangRuichi. This team utilized a Visual-Language Model 
(VLM) inspired by MedKLIP (Wu et al., 2023), incorporating anatomical 
and textual information to enhance generalization and performance. 
The authors used a ResNet50 (He et al., 2016) architecture without 
pretraining for image encoding, as pretraining on ImageNet may intro-
duce biases due to domain and distribution differences between natural 
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Table 4
mAP of top-4 team’s final model on all 40 classes evaluated on the test set in Task 1. mAUROC, mF1, 
and mECE are also presented, with the numbers in parentheses indicating the rankings based on the 
corresponding evaluation metric.
Ranking Team mAP mAUROC mF1 mECE

1 A 0.281 0.847 (3) 0.289 (3) 0.589 (4)
2 B 0.279 0.843 (5) 0.286 (4) 0.592 (6)
3 C 0.277 0.849 (1) 0.299 (1) 0.603 (8)
4 D 0.277 0.842 (6) 0.285 (5) 0.602 (7)
images and chest X-ray datasets. By training the model from scratch, the 
authors aim to mitigate these domain and distribution gaps and better 
tailor the model to the characteristics of chest X-ray images. To enable 
zero-shot capability, categorical labels were augmented with GPT-4-
generated descriptions, and BioClinical BERT (Alsentzer et al., 2019) 
was employed for text encoding, capturing rich semantic informa-
tion. Anatomical location data from CheXpert was integrated, mapping 
MIMIC-CXR diseases to corresponding regions to address the lack of 
fine-grained labels. For training, they applied a cross-entropy loss to 
improve accuracy and a contrastive loss to link diseases with anatomi-
cal regions. During testing, a class-wise ensemble strategy and test-time 
fusion of predictions from different patient views were implemented to 
improve overall accuracy.
Team I: pamessina . This team developed a multimodal model for 
the zero-shot classification task. The text encoder is the CXR Fact En-
coder (CXRFE) (Messina et al., 2024), which computes fact embeddings 
from short factual sentences. The text encoder remains frozen during 
training. The image encoder is trained end-to-end, and the team ex-
perimented with several architectures, including DenseNet121 (Huang 
et al., 2017), SigLIP Base (Zhai et al., 2023), ConvNext-Small (Liu 
et al., 2022), and Uniformer (Li et al., 2022). The model uses the 
fact embeddings to modulate local and global features from the image 
encoder via FiLM (Perez et al., 2018) to predict both a binary coarse 
segmentation mask (representing the visual grounding of the fact) and 
a global binary classification of the fact for the entire image. The best 
results were achieved using an ensemble of 21 models, each with a 
different configuration of image encoder and training data. This work 
also used GPT-4 (Achiam et al., 2023) as an automatic labeler for 
MIMIC-CXR reports and included additional datasets, some of which 
contained bounding boxes to provide visual grounding supervision.

3.3. Task 1 primary evaluation results

CXR-LT test phase results. The results of the top 4 teams in Task 1 
are listed in Table  4. Team A took first place with an mAP of 0.281, 
Team B came in second with an mAP of 0.279, while Teams C and D 
both achieved an mAP of 0.277. However, Team C ranked third due 
to a higher mAUC. In CXR-LT 2023, the top 4 teams achieved mAP 
scores ranging from 0.349 to 0.372, much higher than this year’s scores 
due to the inclusion of 19 new rare classes in CXR-LT 2024. When 
evaluating this year’s top solutions on the set of 26 CXR-LT 2023 labels, 
we observe mAP scores of 0.371, 0.373, 0.371, and 0.370, respectively. 
Compared to CXR-LT 2023, top performers in Task 1 improved their 
overall performance in these classes (e.g., the second-place finisher 
in CXR-LT 2023 reached 0.354 mAP). Supplementary Table 1 details 
the performance of each class for the top four teams. Additionally, 
Supplementary Tables 2 and 3 present per-class F1 scores, macro- and 
micro-averaged F1 scores, and false-negative rates for critical findings.
Long-tailed classification performance. To examine predictive perfor-
mance by label frequency, we split the 40 target classes into ‘‘head’’ 
(>10%), ‘‘medium’’ (1%–10%), and ‘‘tail’’ (<1%) categories based on 
their prevalence in the training set, consisting of 9, 14, and 16 cate-
gories, respectively. Category-wise mAP is presented in Table  5, as well 
as a ‘‘category-wise average’’ of head, medium, and tail mAP. Team
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Table 5
Long-tailed classification performance on ‘‘head’’, ‘‘medium’’, and ‘‘tail’’ classes by 
average mAP within each category. These categories were determined by the relative 
frequency of each class in the training set (denoted in parentheses). The rightmost 
column denotes the average of head, medium, and tail mAP. The best mAP in each 
column appears in bold.
 Team Overall Head Medium Tail Avg  
 (>10%) (1%–10%) (<1%)  
 A 0.281 0.567 0.263 0.136 0.322 
 B 0.279 0.569 0.260 0.133 0.321 
 C 0.277 0.570 0.253 0.136 0.320 
 D 0.277 0.568 0.264 0.125 0.320 

A not only achieved the highest overall performance but also excelled 
in the ‘‘tail’’ group. However, the top three performances in the ‘‘tail’’ 
group were very close. Team A used pretrained large generative models 
to generate new images for these tail cases, while Teams B and C
applied loss reweighting, indicating that both approaches can improve 
performance in the ‘‘tail’’ group.

3.4. Task 2 primary evaluation results

The results of the top 4 teams in Task 2 are listed in Table  6. The 
first place went to Team C with an mAP of 0.526. Team E placed 
second with an mAP of 0.511, Team A secured third with an mAP of 
0.511, and Team F placed fourth with an mAP of 0.509. All four teams 
used ensembling methods to improve model performance, achieving 
results similar to last year; for instance, top CXR-LT 2023 performers 
achieved mAP scores of 0.519, 0.518, and 0.519 on the same gold 
standard test set. Supplementary Table 4 provides the detailed class-
specific performance for these top teams. Additionally, Supplementary 
Tables 5 and 6 present per-class F1 scores, macro- and micro-averaged 
F1 scores, and false-negative rates for critical findings.

As mentioned in Section 2.2.2, the test set in Task 2 is the subset 
of the test set in Task 1, with only 26 manually annotated labels. 
Table  4 and 6 show that the first-place team in Task 2 ranked third 
in Task 1, while the second-place team in Task 2 was first in Task 1. 
Additionally, from the challenge leaderboards,89 we can see that the 
third- and fourth-place teams in Task 2 ranked sixth and fifth in Task 
1, with mAP scores of 0.269 and 0.273, respectively. We selected ten 
teams that submitted their results for both tasks, named them T1 to 
T10, and analyzed their performance based on the results. Despite a 
large distribution shift between these datasets, the overall performance 
consistency remained stable between Tasks 1 and 2 (Fig.  3; 𝑅2 = 0.946, 
𝑟 = 0.972).

3.5. Task 3 primary evaluation results

Table  7 presents results for the top 3 performing teams in Task 
3. Team G secured the first place with an mAP of 0.129. Following 
closely, Team H earned second place with an mAP of 0.116, while 

8 https://codalab.lisn.upsaclay.fr/competitions/18603#results
9 https://codalab.lisn.upsaclay.fr/competitions/18601#results

https://codalab.lisn.upsaclay.fr/competitions/18603#results
https://codalab.lisn.upsaclay.fr/competitions/18601#results
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Table 6
mAP of top-4 team’s final model on all 26 classes evaluated on the Gold standard test set in Task 2. 
mAUROC, mF1, and mECE are also presented, with the numbers in parentheses indicating the rankings 
based on the corresponding evaluation metric.
Ranking Team mAP mAUROC mF1 mECE

1 C 0.526 0.833 (3) 0.499 (1) 0.464 (6)
2 A 0.519 0.834 (2) 0.471 (4) 0.457 (30
3 E 0.511 0.836 (1) 0.265 (9) 0.744 (10)
4 F 0.509 0.829 (5) 0.474 (3) 0.462 (5)
Table 7
Performance evaluation of the final models from the top 3 teams on the test set for all five unseen classes 
in Task 3. mAUROC, mF1, and mECE are also presented, with the numbers in parentheses indicating the 
rankings based on the corresponding evaluation metric.
Ranking Team mAP mAUROC mF1 mECE

1 G 0.129 0.741 (2) 0.075 (6) 0.817 (8)
2 H 0.116 0.673 (8) 0.035 (7) 0.907 (9)
3 I 0.110 0.744 (1) 0.094 (4) 0.711 (6)
Fig. 3. Comparison of performance on CXR-LT Task 1 data (Section 2.2.1) and gold 
standard Task 2 data (Section 2.2.2).

Team I came in third with an mAP of 0.110. Compared to the other 
tasks, the relatively low performance in Task 3 can be attributed to 
the challenging zero-shot nature of detecting findings that were never 
seen during training. Supplementary Table 7 details the class-specific 
performance of these top teams. Additionally, Supplementary Table 8 
and 9 report per-class F1 scores, macro- and micro-averaged F1 scores, 
and false-negative rates for critical findings.

3.6. Comparison of rule-based and GPT-4o labeling

In the CXR-LT dataset, labels were initially generated using a rule-
based method. Approaches like this have proven successful in au-
tomatically labeling existing CXR datasets (Irvin et al., 2019; Wang 
et al., 2017; Bustos et al., 2020), but recent developments in large 
language models (LLMs) suggest they may be useful candidates for 
this task. Team I opted to use GPT-4 to label the data from MIMIC-
CXR reports, instead of relying on the rule-based labels. With a dataset 
of 406 manually annotated samples, we calculated the precision to 
assess whether large language models could generate more accurate 
labels. Table  8 lists the performance comparison between the rule-based 
method and GPT-4o, using prompts suggested by Wei et al. (2024). 
The rule-based method achieved a precision of 0.711, whereas GPT-4o 
reached a precision of 0.786.
7 
Table 8
Performance of models on long-tailed, multi-label disease classification evaluated using 
micro-precision on our gold standard test set.
 Rule-based GPT-4o

 Atelectasis 0.611 0.590
 Calcification of the Aorta 1.000 0.857
 Cardiomegaly 0.769 0.938
 Consolidation 0.816 0.849
 Edema 0.638 0.804
 Emphysema 0.609 0.639
 Enlarged Cardiomediastinum 0.583 1.000
 Fibrosis 0.667 0.682
 Fracture 0.870 0.937
 Hernia 0.633 0.810
 Infiltration 0.261 0.889
 Lung Lesion 0.161 0.000
 Lung Opacity 0.853 0.984
 Mass 0.513 0.810
 Normal 0.917 0.972
 Nodule 0.821 0.844
 Pleural Effusion 0.798 0.812
 Pleural Other 0.810 0.500
 Pleural Thickening 1.000 0.815
 Pneumomediastinum 0.875 0.889
 Pneumonia 0.191 0.435
 Pneumoperitoneum 0.676 0.840
 Pneumothorax 0.563 0.865
 Subcutaneous Emphysema 0.955 0.889
 Support Devices 0.948 0.933
 Tortuous Aorta 0.958 0.861

 Mean 0.711 0.786

4. Discussion

4.1. Themes of top CXR-LT 2024 solutions

As outlined in Table  3 the system descriptions, we observe several 
common themes among top-performing solutions across the three tasks, 
as well as some unique perspectives.
Modern convolutional neural network architectures. The top-performing 
solutions commonly used convolutional neural networks (CNNs) as 
image encoders, continuing the trend from CXR-LT 2023. ConvNeXt 
emerged as the most popular choice (Liu et al., 2022), followed by 
EfficientNet (Tan and Le, 2021), ResNet (He et al., 2016), and DenseNet
(Huang et al., 2017). ConvNeXt consistently outperformed other archi-
tectures, both in 2023 and 2024. We attribute ConvNeXt’s popularity 
and strong performance to two main factors: (1) its adoption by last 
year’s top-performing solutions, which sets a standard, and (2) its 
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design for scalable performance across different image resolutions, 
making it well-suited to capture multi-scale information.
Vision transformers. While none of the top-performing solutions used 
Vision Transformers (ViTs) (Khan et al., 2022) as image encoders in 
2023, there has been a noticeable shift in 2024, with four teams 
adopting ViT-based models. Specifically, Teams E and G dedicated their 
image encoding entirely to ViTs. In contrast, Teams F and I opted for 
a hybrid approach, combining ViT-based Transformers with CNNs. We 
attribute the increased adoption of ViT-based transformers to two main 
factors: (1) the complementary strengths offered by integrating both 
CNNs and ViTs (Pantelaios et al., 2024), which can enhance feature 
extraction and representation capabilities, and (2) the strategic use 
of additional datasets for pretraining the image encoders, which is 
particularly beneficial for effectively training ViT-based transformers, 
improving their robustness and generalization.
Large-scale pretraining. Eight of the nine top-performing solutions re-
lied on supervised pretraining or transfer learning. While some teams 
used standard ImageNet-pretrained models, several others performed 
additional pretraining on publicly available ‘‘in-domain’’ CXR datasets 
such as ChestXRay-14 (Wang et al., 2017), CheXpert (Irvin et al., 2019), 
VinDr-CXR (Nguyen et al., 2022), and BRAX (Reis et al., 2022). No-
tably, Teams B, C, D, F, and G employed a multi-stage pretraining strat-
egy, starting with general pretraining on natural images, followed by 
domain-specific pretraining on CXR data, similar to approaches used by 
several teams in CXR-LT 2023. In contrast, Team H reported that their 
proposed model achieved superior performance without pretraining.
Ensemble learning and data augmentation. As with CXR-LT 2023, many 
top solutions (eight out of nine) employed a variety of ensemble 
learning strategies to improve generalization (Ganaie et al., 2022; 
Fort et al., 2019). Teams B, C, F, G, and I created ensembles across 
different model architectures; Teams A and E formed ensembles by 
using different image resolutions; and Team H constructed an ensemble 
strategy based on multiple views of the same image, but using the same 
model architecture across these views. In addition to ensemble learning,
all teams incorporated image augmentation, a well-established tech-
nique for enhancing generalization (Xu et al., 2023). Notably, Team
A leveraged a diffusion model to generate synthetic images to augment 
rare tail classes.
Loss re-weighting. To address the long-tailed distribution of labels, five 
out of the nine top-performing solutions adopted loss re-weighting 
techniques to boost the importance of rare tail classes. These five teams 
(B, C, D, F, and G) all utilized a weighted asymmetric loss (Ridnik 
et al., 2021), which is specifically designed for handling imbalanced 
multi-label classification scenarios. Additionally, Team G implemented 
a weighted binary cross-entropy loss alongside this approach. The 
widespread adoption of the weighted asymmetric loss function can be 
attributed to its success in CXR-LT 2023, where it was employed by 
top-ranking teams. It is worth noting that two of the top solutions in 
Task 3 opted not to use weighted losses, primarily due to a lack of 
information about the distribution of the five unseen classes. However, 
one of the top solutions in Task 3 adopted a weighted loss approach by 
converting the zero-shot problem into a few-shot problem, leveraging 
prior knowledge about the unseen classes extracted from text-based 
descriptions.

Multimodal vision-language learning. Multimodal vision-language learn-
ing has recently gained popularity in deep learning for radiology, 
particularly as a pretraining approach using paired CXR images and 
free-text radiology reports (Chen et al., 2019; Yan and Pei, 2022; 
Delbrouck et al., 2022; Moon et al., 2022; Li et al., 2024b; Moor et al., 
2023). This year, eight of the nine teams successfully leveraged both 
image and text data in some form. For example, Team C employed a 
combination of image-to-image and text-to-image contrastive learning 
to enhance feature representation. Meanwhile, Team D employed the 
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ML-Decoder (Ridnik et al., 2023) classification head, which treats labels 
as text ‘‘queries’’ that interact with image features via cross-attention. 
Notably, all three teams in Task 3 utilized multimodal vision-language 
models to enable zero-shot generalization to the five novel classes in 
Task 3.
Chatgpt/GPT-4. With LLMs’ increasing popularity in general and med-
ical domains, three teams utilized ChatGPT or GPT-4 for Task 3. Team
G used ChatGPT (Achiam et al., 2023) to create fine-grained disease de-
scriptions, potentially enhancing the performance of the text encoder. 
Team H leveraged GPT-4 to generate descriptive text augmentations for 
categorical labels, thereby facilitating zero-shot learning. In contrast, 
Team I opted not to use the provided labels and instead employed 
GPT-4 as an automatic labeler for MIMIC-CXR reports. They further 
incorporated additional CXR datasets, including some with bounding 
boxes, to support visual grounding supervision.
Implications of synthetic data for long-tailed classification. Team A’s use 
of generative models to create synthetic data for rare classes appears to 
be a promising approach, as reflected in their performance. Synthetic 
data has the potential to mitigate extreme class imbalance by supple-
menting underrepresented classes, especially in domains where real 
data collection is costly or slow. However, it also raises questions about 
data fidelity, domain shift, and overfitting. As synthetic data generation 
techniques (e.g., diffusion models, GANs) continue to evolve, their role 
in addressing long-tailed medical image classification warrants further 
investigation, particularly regarding trustworthiness, generalizability, 
and clinical utility.

4.2. Limitations and future work

A key limitation of this study is the reliance on the MIMIC-CXR 
dataset, which was collected at a single academic medical center in the 
United States. As a result, the data may reflect institution-specific pa-
tient demographics, disease prevalence, imaging protocols, and equip-
ment characteristics. These factors could limit the generalizability of 
the models to other geographic regions, healthcare systems, or clinical 
workflows. Although several top-performing teams incorporated addi-
tional publicly available CXR datasets (e.g., CheXpert, PadChest, VinDr-
CXR) during training to enhance robustness, the final evaluation and 
leaderboard rankings were based solely on MIMIC-CXR test data. To 
more rigorously assess model generalization and ensure broader clin-
ical applicability, future editions of the challenge should incorporate 
external test sets drawn from diverse institutions and populations. This 
would facilitate a more comprehensive evaluation of cross-site transfer-
ability and reveal potential sources of dataset shift or subgroup-specific 
bias.

Additionally, addressing bias in the models is critical. Existing stud-
ies have shown that deep neural networks trained on single-institution 
CXR datasets often exhibit disparities in predictive performance linked 
to factors like race and sex (Seyyed-Kalantari et al., 2020; Lin et al., 
2023). While (Seyyed-Kalantari et al., 2020) observed that training on 
larger, multi-institutional datasets could help mitigate these disparities, 
their work focused on binary classification tasks. To date, no research 
has specifically examined bias in long-tailed, multi-label, and zero-
shot classification tasks. Future investigations could explore methods 
to tackle these challenges, ensuring that models are both fair and 
generalizable across diverse populations and settings through rigorous 
subgroup analysis and multi-site validation.

Similar to most publicly available CXR benchmark datasets, the 
CXR-LT dataset is constrained by inherent label noise resulting from 
automatically extracted text-mined labels (Abdalla and Fine, 2023). 
However, with the advancement of LLMs, recent studies (Wei et al., 
2024) have demonstrated that GPT-4 can potentially generate more 
accurate labels for CXR datasets than traditional methods such as rule-
based approaches. In our study, Table  8 supports this observation, 
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showing that GPT-4 produces higher-quality labels as evidenced by im-
proved mAP. Other LLMs may also surpass traditional methods in label 
generation, presenting a promising avenue to reduce label noise in the 
future. Future iterations of CXR-LT may leverage LLM-based labeling 
pipelines to generate structured labels for arbitrarily large, long-tailed 
CXR datasets, which have proven successful in recent efforts (Zheng 
et al., 2024). Additionally, as more classes are included, the prompts 
for LLMs become longer, which may cause performance degradation 
by overwhelming the model and potentially leading to forgetting some 
classes. To mitigate this issue, reframing the labeling task as a natural 
language inference (NLI) problem and focusing the prompt on one 
class at a time can be an effective strategy. Moreover, incorporating 
techniques like chain-of-thought (CoT) prompting can further enhance 
performance by improving reasoning and response generation. Alterna-
tively, a knowledge graph can be employed to separate the classes into 
different subgroups before applying LLM-based labeling, providing a 
structured and systematic approach to addressing this challenge.

Moreover, while it is challenging to obtain sufficient samples for 
deep learning training through manual annotation by radiologists due 
to the prohibitively high costs and time requirements (Zhou et al., 
2021), providing a ‘‘gold standard’’ dataset for testing purposes remains 
feasible. In this work, we leveraged and publicly released such a dataset 
with more reliable labels. However, this dataset was annotated by 
graduate students reviewing the clinical report text. In the future, 
this dataset could benefit from consensus re-annotation by radiology 
residents or attendings to enhance its quality. Additionally, manually 
annotating an external dataset for validation purposes could further 
enhance the evaluation of proposed methods, providing more reliable 
and accurate performance benchmarks.

As outlined in the overview of CXR-LT 2023 (Holste et al., 2024), 
zero-shot classification can be the ideal approach for clinically vi-
able long-tailed medical image recognition, enabling adaptation to any 
novel finding. This year, the top three teams in Task 3 all utilized 
vision-language models to tackle this challenge, highlighting their po-
tential. However, there remains significant room for improvement in 
several areas: aligning image and text representations more effectively, 
extracting information about unseen classes from textual data, and 
accurately detecting abnormal regions in images. Furthermore, efficient 
fine-tuning of vision-language models or instruction tuning will be cru-
cial in addressing the challenges associated with the zero-shot disease 
classification problem.

Despite recent methodological advances, mean Average Precision 
(mAP) and F1 scores for chest X-ray (CXR) disease classification remain 
relatively modest. This raises a critical question: Are these perfor-
mance metrics clinically acceptable? For example, an mAP in the range 
of ∼0.28–0.52 indicates performance well above random chance, yet 
likely falls short of the reliability required for autonomous clinical 
use. Several factors contribute to these limitations. First, extreme class 
imbalance – especially with rare findings – can skew performance and 
reduce sensitivity for less-represented diseases. Second, both training 
and evaluation datasets often contain label noise due to weak super-
vision or annotation inconsistencies. Third, chest X-ray as an imaging 
modality inherently lacks the resolution or contrast to clearly distin-
guish certain pathologies, particularly those with subtle or overlapping 
visual cues. Additionally, most models rely on thresholded probabilistic 
outputs, which can suffer from calibration issues, further affecting 
the reliability of decisions. To mitigate these challenges and improve 
real-world utility, future research may explore approaches such as 
multimodal decision fusion, calibrated confidence estimation, clinician-
in-the-loop validation, and active learning techniques for better rare 
class sampling. Moreover, reporting per-class metrics and conduct-
ing failure mode analysis can help contextualize model performance, 
guiding more informed deployment strategies in clinical settings.
9 
5. Conclusion

In summary, we organized CXR-LT 2024 to address the challenges 
of long-tailed, multi-label disease classification and zero-shot learning 
from chest X-rays. For this purpose, we have curated and released a 
large, long-tailed, multi-label CXR dataset containing 377,110 images, 
each labeled with one or more findings from a set of 45 disease 
categories. Additionally, we have provided a publicly available ‘‘gold 
standard’’ subset with human-annotated consensus labels to facilitate 
further evaluation. Finally, we outline a pathway to enhance the reli-
ability, generalizability, and practicality of methods, with the ultimate 
goal of making them applicable in real-world clinical settings.
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